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Abstract We have developed a novel and robust approach

for automatic and unsupervised simultaneous nuclear

Overhauser effect (NOE) assignment and structure deter-

mination within the CS-Rosetta framework. Starting from

unassigned peak lists and chemical shift assignments, auto-

NOE-Rosetta determines NOE cross-peak assignments and

generates structural models. The approach tolerates incom-

plete and raw NOE peak lists as well as incomplete or par-

tially incorrect chemical shift assignments, and its

performance has been tested on 50 protein targets ranging

from 50 to 200 residues in size. We find a significantly

improved performance compared to established programs,

particularly for larger proteins and for NOE data obtained on

perdeuterated protein samples. X-ray crystallographic

structures allowed comparison of Rosetta and conventional,

PDB-deposited, NMR models in 20 of 50 test cases. The

unsupervised autoNOE-Rosetta models were often of sig-

nificantly higher accuracy than the corresponding expert-

supervised NMR models deposited in the PDB. We also

tested the method with unrefined peak lists and found that

performance was nearly as good as for refined peak lists.

Finally, demonstrating our method’s remarkable robustness

against problematic input data, we provided correct models

for an incorrect PDB-deposited NMR solution structure.

Keywords Nuclear magnetic resonance � Automatic data

analysis � Structure determination

Significance statement

Along with X-ray crystallography, NMR structure determi-

nation is the only available high-resolution method for protein

structure determination. NMR spectroscopy is conducted in

aqueous solution and thus be the only route towards high-

resolution 3D structures for proteins that cannot be crystal-

lized. However, the analysis of NMR data is very time-con-

suming and can generally only be conducted by highly trained

NMR experts, which require between weeks and months to

obtain accurate and precise structures. Here, we provide a

novel method to automate the analysis process and show that

accurate structures can be obtained. Remarkably, the auto-

matically generated structures are, in a majority of the cases,

more accurate than the structures laboriously generated by

NMR experts. Our method promises to significantly increase

the attractiveness and viability of NMR structure

determination.

Introduction

Structure determination by nuclear magnetic resonance

(NMR) spectroscopy is largely driven by distance
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information gathered through nuclear Overhauser effect

spectroscopy (NOESY). To use such data as distance

restraints, the NOESY crosspeaks in multidimensional

spectra have to be assigned to individual atoms of the

biomolecular system. NOESY crosspeak assignment and

structure generation steps are usually performed in an

integrated, iterative manner. This maximizes the number of

conformational restraints, while guaranteeing self-consis-

tency amongst distance restraints (Wüthrich 1986).

Many of the repetitive tasks in NMR structure determi-

nation have been successfully automated (Guerry and

Herrmann 2011; Moseley and Montelione 1999; Baran et al.

2004; Guntert 2009). Two such crucial tasks in the chain of

the data analysis are the assignment of NOE crosspeaks and

the determination of accurate structural models. Popular

programs that perform these two tasks include ARIA (Linge

et al. 2003a), CYANA (Guntert 2009; Guntert et al. 1997),

AutoStructure (Huang et al. 2006) and UNIO (Serrano et al.

2012) and have recently been tested with good results in a

blind-testing challenge (Rosato et al. 2012). However, a

limitation of these programs is that they have to be able to

generate a sufficiently accurate model from the initial set of

assignments. This usually limits the methods to small pro-

teins with high quality spectra, complete and accurate

chemical shift assignments, and well-refined peak lists.

When conditions are suboptimal, a calculation either does

not converge, or worse, converges to a precise but inaccurate

fold (Guerry and Herrmann 2011). Accordingly, these pro-

grams are not usually used unsupervised, and must instead be

applied in combination with manual assignment and possibly

peak list refinement by a skilled NMR expert. Indeed, in our

own work on larger proteins, a few manual assignments were

required to bootstrap the automated analysis with CYANA

(Lange et al. 2012).

Here, we aim to develop an NOE assignment and

structure determination algorithm that can—unsuper-

vised—produce results that are both reliable and accurate.

This algorithm should take chemical shift assignments and

unassigned NOE peak lists as input and produce, without

further user interaction, refined models of protein structures

in atomic resolution.

To achieve this goal, we combine Rosetta structure

prediction with automatic NOE assignment. It has been

demonstrated that Rosetta, which searches for the lowest

energy conformation of the polypeptide chain using phys-

ically realistic force fields, requires only very sparse NMR

data to guide its search to accurate structures (Lange et al.

2012; Raman et al. 2010). The question we ask here is

whether the very noisy automatically assigned NOE

restraints might be able to provide sufficient guidance for

Rosetta to yield accurate initial models. These models

would then allow iterative refinement of NOE assignments

until accurate high-quality structures and self-consistent

assignments can be generated. Iteration of automatic NOE

assignment with structural modeling is, however, also the

basis of established algorithms. Thus, the crucial question to

be explored in this study is not whether iteration between

modeling and assignment is a successful strategy, but rather

if a significant benefit is gained by using the improved, but

computationally more demanding, ROSETTA structural

modeling, and if we can solve the engineering challenge to

render the ROSETTA structure calculation sufficiently

robust against the very noisy automatically assigned NOE

restraints of the initial assignment stage. In cases where

established programs cannot find converged initial models,

and thus fail, the new approach might converge and thus

applicability is broadened to include more challenging

cases. Additionally, the more accurate modeling provided

by the ROSETTA energy function might render the method

more robust against erroneous input data and yield more

accurate final 3D models.

To couple NOE assignment with ROSETTA, we build on

the previously developed iterative structural modeling

algorithm, RASREC, and extend it to become an algorithm

for automatic NOE assignment. This entails the implemen-

tation of a new ROSETTTA module for automatic NOE

assignment as well as the development of a robust protocol to

couple the iterative search for the near-native protein struc-

tures in RASREC with iterative NOE assignment. The

assignment module employs among other techniques, net-

work anchoring (Herrmann et al. 2002), ambiguous

restraints (Nilges et al. 1997), covalent structure compliance

(Herrmann et al. 2002; Huang et al. 2005), structure depen-

dent and independent peak calibration, and restraint com-

bination (Herrmann et al. 2002). In our final protocol, the

calculation consists of multiple iterations of structural sam-

pling guided by automatically assigned NOE restraints. In

early iterations, cross-peak assignments compatible with

preliminary models are reinforced, but incompatible

assignments are not removed. In later iterations, incompat-

ible cross-peak assignments are removed from the restraint

list. Throughout the whole process, however, a pool of best

fitting structures is maintained that is ranked by the initial

NOE assignments. This is a major difference to existing

programs and helps us to prevent convergence on inaccurate

but self-consistent solutions. Implementation details of the

new method will be described elsewhere (Lange 2013).

To investigate the performance of the new methodology,

we carried out a benchmark on 50 NOE data sets obtained

from 41 protein samples of 63–370 residues length. To test

the impact of difficult inputs on the performance of auto-

NOE-Rosetta, we have included unrefined and automati-

cally picked peak lists, as well as sparse data sets obtained

from perdeuterated ILV-methyl labelled protein samples.

To avoid unwittingly cherry-picking targets that work

especially well for our method, we chose three pre-existing
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benchmark sets and used all monomeric proteins from each

(Rosato et al. 2012; Lange et al. 2012; Mao et al. 2011).

In the following, we report on the results of the bench-

mark. First, we will contrast the performance of AutoNOE-

Rosetta with CYANA. Subsequently, we compare the

accuracy of the unsupervised method with the state of the

art of expert guided NMR structure determination as

reflected in PDB-deposited NMR models. This is followed

by an analysis of structure validation metrics and NOE

completeness scores. Finally, we stress test the method with

non-ideal input data, such as raw or unrefined peak lists or

incomplete and erroneous chemical shift assignments.

Results

Comparison with CYANA

We have defined a single set of parameters that is used to

run all targets, including data preparation (e.g., automatic

trimming of flexible tails), structure calculation and final

model selection. Thus, results in similar quality as reported

here should be achievable from application of the method to

as yet unknown targets. We also provide a suite of scripts

that allow the user to run the software in this unsupervised

fashion. The entire benchmark set and the final models can

be obtained from our website (www.csrosetta.org/bench

marks) and our results can be scrutinized by interested

readers using our software and accompanying toolchain.

The benchmark comprises 50 NOE data sets derived

from 40 different proteins ranging in size from 5.5 to

40 kDa. Input data are the sequence, chemical shift

assignments and NOE peak lists (‘‘Methods’’ section, SI

Appendix, Table S1). In 20 cases, RDC data of the N–H

bond vectors in one or more alignment medium was also

included (SI Appendix, Table S1).

Multiple calculations are carried out with different

weighting of the NOE data against the Rosetta Energy. One is

selected from these based on a combination of final Rosetta

Energy and the intrinsic precision of the resulting models

(‘‘Methods’’ section). Finally, to be accepted as a successful

solution, the structures must fulfill two criteria: convergence

and intrinsic NOE consistency (SI Appendix: Methods Sec-

tion 2.2). AutoNOE-Rosetta was run successfully on 42 of 50

data sets, comprising 35 different proteins. Final models are

shown in SI Appendix, Fig. S1 for all targets, and their accu-

racy is reported in SI Appendix, Table S2 as Ca-RMSD with

respect to the reference structure. A number of targets have

only been used after the autoNOE-algorithm was finalized,

including all parameters, and the run selection protocol. These

targets are DrR147D, MrR110B, OR8C, PfR13A, PsR293,

SR384, SgR42, VpR247, and HmR11 and display similar

performance as the other targets (SI Appendix, Table S2).

To provide a reference for the performance of autoNOE-

Rosetta, we chose to run the popular program CYANA 3.0,

which obtained the most accurate models in a recent

community-wide blind structure determination challenge

(CASD) (Rosato et al. 2012). In analogy to AutoNOE-

Rosetta, we have defined an acceptance rule for CYANA.

Based on suggestions of CYANA’s creator, Peter Güntert,

we use a combination of convergence and CYANA’s target

function (SI Appendix: Methods Section 2.1, Fig. S2).

CYANA was successful for 31 of 50 data sets according to

its acceptance rule (‘‘Methods’’ section). Thus, a significant

improvement in both accuracy and radius of convergence for

autoNOE-Rosetta is observed with respect to CYANA

(Fig. 1). All structures that failed the automatic acceptance

criteria in autoNOE-Rosetta also failed in CYANA, but

eleven of the failing targets in CYANA were acceptable

according to the criteria in autoNOE-Rosetta, and yielded

accurate structures below 2.5 Å RMSD (Fig. 1). Further-

more, 10 of 17 inaccurate CYANA-structures (RMSDs [
2.5 Å) were determined accurately by autoNOE-Rosetta

(RMSDs \ 2.5 Å). Numerical values of the Ca-RMSD

against the reference structures for CYANA and autoNOE-

Rosetta can be found in (SI Appendix: Table S2).

Comparison with PDB-deposited NMR structures

The state-of-the-art in high-resolution NMR structure

determination typically involves not just a single CYANA

run, but performing several rounds of CYANA-based NOE

assignment and refinement of the input peak lists (or even

manual assignments, going through peak-by-peak), followed

by simulated annealing in XPLOR or CNS (considered to

have a better force field than CYANA), and finally a high-

resolution refinement in explicit water (Linge et al. 2003b),

where RDCs are used if present. To directly compare auto-

NOE-Rosetta to this more complex structure determination

protocol, we included 20 protein targets in our benchmark for

which both a conventionally determined solution NMR

structure and an X-ray crystal structure are available. We

further assume that the state-of-the-art in NMR structure

calculation is well reflected in these 20 PDB-deposited NMR

solution structures. Indeed, all these structures were depos-

ited in the last decade, the program CNS is listed in all PDB

headers (except 1xpv), and whenever the respective remark

section is provided in the PDB header (12 of 20 cases), water

refinement is mentioned explicitly.

In this study, we assume that the X-ray structure is an

accurate representation of the dominant solution structure;

accordingly, the RMSD of atomic coordinates between

NMR and X-ray structure provides a measure for the accu-

racy of the NMR structure. This view is supported by the

NMR data (SI Appendix: Table S3). Based on this criterion,

autoNOE-Rosetta significantly outperforms conventional
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supervised NMR structure determination (Fig. 2a and SI

Appendix, Table S4). For 10 of 21 targets, accuracy is sig-

nificantly improved, and only for 2 of 21 it is decreased

(CcR55, partially converged; ER690 unconverged). More-

over, if we restrict the analysis to the 19 converged targets,

accuracy never deteriorates more than 33 %, whereas it

improves for 7 targets significantly beyond 33 %. This is in

stark contrast to the performance of established automatic

assignment programs. Only 3 of the smallest targets of the

benchmark set (\80 residues) yield sufficiently accurate

results in CYANA to compete with PDB deposited NMR

structures. For the other 18 of 21 targets, the structures

obtained unsupervised with CYANA are [25 % worse in

accuracy than PDB-deposited NMR structures (Fig. 2b). Of

these 18 with deteriorated accuracy, 13 yield a tight struc-

tural bundle and 10 are acceptable according to the success

criteria introduced above (SI Appendix: Tables S2–S8).

Analysis of structural quality

In addition to a high accuracy, we generally would like to

obtain 3D models of proteins with a high structural quality.

This quality is generally assessed by structural validation

packages through various metrics, such as packing quality,

Ramachandran consistency, and Janin-plots. NMR solution

structures based on NOE distance restraints are prone to

show deficits (Doreleijers et al. 2011), whereas un-restrained

CS-Rosetta models were previously reported to show high
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Fig. 1 Comparison of autoNOE-Rosetta with CYANA. Shown are

the median Ca-RMSDs of final models with respect to their reference

structure on logarithmic scale. The diagonal line indicates points of

equal performance, points above the line correspond to targets for

which CYANA yields lower RMSDs, and points below the line

correspond to targets for which autoNOE-Rosetta yields lower

RMSDs. The dashed lines mark 2.5 Å RMSD. The size of the

proteins is proportional to the area of the symbol as indicated by the

legend. The color indicates whether for CYANA, autoNOE-Rosetta

or for both programs the final models are considered as success based

on convergence and NOE consistency (SI Appendix, Method

Section 2.0). RMSDs are capped at a maximum of 25 Å. Assignment

statistics, convergence and accuracy of final models can be found in

SI Appendix Table S7 and SI Appendix Table S8 for autoNOE-

Rosetta and CYANA models, respectively. Comparing heavy-atom

RMSDs instead of Ca-RMSDs yields a similar picture (SI Appendix,

Fig. S6)
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Fig. 2 Comparison of unsupervised automatic NOE models with

expert-analyzed NMR solutions structures. The Ca-RMSDs of PDB

deposited NMR models is plotted against final models obtained with

a autoNOE-Rosetta and b CYANA. For AR3436a no X-ray structure is

available as reference, but a new manually refined NMR solution

structure, which supersedes 2kj6 (Fig. 4 and ‘‘Results’’ section). The

solid diagonal line indicates points of equal performance, points above

the line correspond to targets where PDB-deposited NMR structures

have higher accuracy, and points below the line correspond to targets

with higher accuracy of the autoNOE-Rosetta models. Dashed lines

mark ±25 % accuracy. The size of the proteins is proportional to the

area of the symbol as indicated by the legend. AutoNOE-Rosetta or

CYANA runs that are not converged (\90 % of residues converged) are
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yields a similar picture (SI Appendix, Fig. S7)
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structural quality but significantly lower accuracy than NOE-

driven structure calculations (Rosato et al. 2012). We were

curious to see whether autoNOE-Rosetta both, preserves the

high structural quality, despite being subjected to a large

number of automatically assigned NOE restraints, and yields

more accurate structures than CS-Rosetta. To assess the

structural quality of AutoNOE-Rosetta models, we used the

online validation server iCING (Doreleijers et al. 2012),

which performs WhatIF (Vriend 1990), PROCHECK (Las-

kowski et al. 1996) and its own structural analysis.

The iCING-ROG score summarizes and integrates dif-

ferent validation measures into a single score and annotates

individual residues as green, orange and red to convey an

increasing level of alertness for unphysical local structure

(Doreleijers et al. 2012). AutoNOE-Rosetta models pro-

duce generally less red and orange residues than PDB

NMR-models or CYANA models (Fig. 3a–c). WhatIF

compares local structure of the protein against common

structural knowledge derived from high-resolution X-ray

structures (Vriend 1990). Figure 3d–f shows the WhatIF
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Fig. 3 Validation metrics for autoNOE-Rosetta, CYANA and PDB-

deposited NMR models. Metrics computed for autoNOE-Rosetta and

CYANA-models are compared to metrics computed on PDB-models,

in panel-columns 1 and 2, respectively. Metrics between autoNOE

and CYANA are conmpared directly in panel-column 3. a–c Fraction

of residues annotated as red, orange and green by the iCING server’s

ROG score(legend). Less red and orange and more green residues is

better. d–f WhatIF Z-scores for Ramachandran plot appearance,

backbone-quality, packing and chi-1/chi-2 rotamer normality (leg-

end). Higher Z-scores are better. g–i The number of NOE restraints

violated by structural models. Structural models of CYANA and

autoNOE are analyzed together with the restraints produced by the

respective algorithms. PDB-deposited models are analyzed with

respect to the NOE restraints uploaded with the structures. j–
l Completeness scores computed with AQUA (Doreleijers et al. 1999)

and AutoStruct-DP (Huang et al. 2005). Higher numbers are better
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structure Z-scores on Ramachandran plot appearance,

backbone quality, 1st generation packing quality, and chi-

1/chi-2 rotamer quality. AutoNOE-Rosetta models gener-

ally are of higher quality than PDB NMR models or

CYANA models.

Analysis of restraint violations

Another popular criterion for judging NMR structure

quality is a low count of restraint violations by the final

models. Figure 3g–i shows how often the final models

violate the NOE-derived restraints by[0.1,[0.3 and[0.5

Å. Generally, NMR restraint-sets deposited with their cor-

responding PDB structures have less violations above[0.3

or [0.5 Å than those obtained with CYANA or autoNOE-

Rosetta, but CYANA and AutoNOE-Rosetta yield similar

results. We found that, for AutoNOE-Rosetta ensembles,

many of the violations occurred at side-chains that adopted

multiple conformations. In these cases, each conformation

would actually be consistent with a subset of the violated

NOE restraints involving this side-chain, and it would be

plausible that dynamic averaging causes the assigned NOE

cross-peaks. Since it is well possible that dynamic averag-

ing might be the reason for some of the observed violations,

as well as the fact that programs could trivially remove any

violated restraint from the restraint-list, it is questionable

whether the count of restraint violations is actually a valu-

able criterion for NMR structure validation. Indeed, we see

no particular correlation between this measure and accuracy

of the final models (Ca-RMSD) regardless whether they

were downloaded from the PDB or generated with CYANA

or autoNOE-Rosetta (SI Appendix: Fig. S3).

Analysis of NOE completeness

Since the autoNOE-Rosetta structures fit more accurately

to X-ray structural models, a possible concern might be

that Rosetta modeling is biased towards X-ray crystallo-

graphic artifacts rather than solution state structure. To

verify that this is not the case, we show that autoNOE-

Rosetta models yield a better or equivalent interpretation of

the NMR data in comparison to conventional NMR solu-

tion structures, as quantified by the AQUA completeness

(Doreleijers et al. 1999) and the AutoStruct DP score

(Huang et al. 2005). AQUA reads the models and restraint

list and checks how many of the proton–proton contacts in

the model are actually observed as assigned NOEs. The

more modern DP score uses chemical shift assignments and

unassigned peak lists as input, and is thus independent of

the specific restraint list. AQUA’s completeness score is

systematically better for AutoNOE-Rosetta than for PDB-

NMR or CYANA models (Fig. 3j–l, black circles). For

most targets the DP scores are comparable between the

different methods (Fig. 3j–l, blue crosses). However, for

some PDB NMR structures with low DP-scores (\0.6),

autoNOE-Rosetta was able to yield significant improve-

ments. Overall these quality measures show that autoNOE-

Rosetta models yield an interpretation of the NMR data

that is as good or better than that of the PDB-deposited

NMR models.

Performance under non-ideal input

Next, we were interested how autoNOE-Rosetta behaves

when provided with problematic data. We tested both

automatic (raw) and refined peak lists for 8 targets from

round II of the blind, community-wide NMR structure

determination challenge (CASD) (Rosato et al. 2009). In

addition to the 8 raw data sets, we use 7 unrefined data sets

from previous work (Lange et al. 2012) and one from

CASD round I. For these unrefined data sets, peaks have

been picked manually and chemical shift assignments have

been validated, but the peak lists and chemical shift

assignments have not yet undergone iterative refinement

using structural models. Of the unrefined data sets, 6 stem

from ILV-methyl labeled perdeuterated protein samples.

Restraints obtained from such ILV-samples are inherently

sparse, rendering structure calculation more challenging

due to a lower restraint density. Moreover, the sparser NOE

networks render the automatic validation of NOE cross-

peak assignments via network anchoring less effective.

The availability of 9 targets with both raw/unrefined and

refined data allows us to investigate the robustness of

autoNOE-Rosetta. AutoNOE-Rosetta turns out to be

remarkably robust; for 7 of the 9 raw/unrefined peak lists

differences in accuracy are insignificant (\0.3 Å). In only

two cases, StT322 and HR5460, was the accuracy signifi-

cantly decreased. The automatic acceptance criteria suc-

cessfully identified both these raw data sets as having

produced untrustworthy results. Interestingly, autoNOE-

Rosetta tends to select a lower weight for the NOE-based

pseudo-energy contribution for raw peak lists compared to

refined peak lists (Table 1), which is consistent with the

presumed lower quality of the data.

Another type of challenging input is given by the 8

unrefined ILV data sets. AutoNOE-Rosetta succeeded on

four of these data sets and yielded a partially converged

structure for another (HmR11). CYANA, however, did not

succeed on any of these 8 data sets. Is the deciding factor,

which makes these data sets so challenging, the sparseness

of the ILV data, the quality of the data sets (unrefined vs.

refined), or the increased molecular weight (ILV data sets

have a molecular weight between 15 and 21 kDa)? One can

mostly exclude the increased molecular weight, as the

driving factor for these failures, since both autoNOE and

CYANA were significantly more successful on the refined
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data sets in the same size range. Furthermore, we showed

above that the influence of data quality (raw vs. refined) on

autoNOE-Rosetta is low for small, double-labeled data

sets. Thus, the lower success rate is likely a result of the

sparseness of the ILV data.

Detecting problematic or unsuccessful calculations

To run autoNOE-Rosetta or CYANA unsupervised, it is

important to have clear criteria to flag problematic runs.

This filter mechanism has to catch most, if not all, prob-

lematic results. In other words, the filter should produce

little or no false positives. Some false negatives, on the

other hand, are not as worrisome, as human experts can

inspect a few such calculations. Here, we have introduced

clear definitions for such a filter rule based on convergence

of structures and NOE self-consistency for CYANA and

autoNOE-Rosetta (SI Appendix: Methods Section 2). Of

the eight declined calculations performed with autoNOE-

Rosetta, four failed both criteria, and four (two each) failed

only one of the criteria. The data sets that only failed the

consistency criterion, are YR313(raw) and StT322(raw).

While YR313 yielded accurate structures (1.4 Å) in auto-

NOE-Rosetta, StT322 did not (Ca-RMSD 3.2 Å; SI

Appendix Fig. S4). For CcR55, HR5460(raw), and

HmR11(unrefined) only 88, 79 and 75 % of residues con-

verged, respectively, failing the criterion of 90 % conver-

gence by only a small margin. In these cases, the converged

part of the structure is reasonably accurate (Ca-RMSDs of

1.3, 2.0, and 3.1 Å, respectively) and would provide an

advanced starting point for further iterative and structure

based refinement of the data set (SI Appendix, Fig. S4).

Hence, as intended, the filter has been successful in pro-

ducing no false positives and only very few false negatives.

Detailed discussion of target AR3436a

The data presented here shows that autoNOE-Rosetta

yields accurate results even when the peak lists are not well

refined. In the following we discuss a fortuitous discovery

that demonstrates that autoNOE-Rosetta is not only robust

against problematic peak lists, but also shows remarkable

accuracy in the face of incomplete or erroneous side-chain

chemical shift assignments. During our work on the here-

presented benchmark we were initially puzzled by one

outlier. For this outlier, AR3436a, autoNOE-Rosetta yiel-

ded structures that were 3.8 Å away from the PDB-

deposited NMR solution structure (2kj6). The AR3436a

data set stems from the CASD set, and was originally posed

as a blind challenge to the community. The results of this

competition seemed fairly standard except the CS-Rosetta

models were identified as an outlier (Rosato et al. 2012): all

NOE driven programs produced structures close to the

PDB-deposited structure (1.4–2.2 Å) and with acceptable,

albeit slightly borderline, validation scores. However, a

closer inspection of the NMR solution models (2kj6)

reveals that the main helix is at an angle causing the

hydrophobic core of the protein to be exposed (Fig. 4a–c).

In the autoNOE-Rosetta models, in contrast, the helix is

well packed against the core (Fig. 4b–d), which is more

consistent with our understanding of the physical chemistry

of hydrophobic protein cores. Moreover, the CS-Rosetta

based submissions to the blind structure determination

challenge also packed the helix against the core (with

Table 1 Impact of raw peak lists

Target Reference Size Residue ranges Weight

ratioa
Ca-RMSD (Å) to reference structure

of NMR

sample

Used in

Rosetta

RMSD

analysis

Raw peak list Refined peak list

CYANA autoNOE-

Rosetta

CYANA autoNOE-

Rosetta

StT322 2loj 38 1–63 26–63 26–63 0.04 8.3 3.2 1.4 1.7

HR6470 2l9r 48 1–69 11–58 11–58 1.00 0.8 0.9 0.8 0.8

OR135 2ln3 69 1–79 5–73 5–73 0.50 0.9 0.8 1.1 0.9

AR3436a tbdc 80 1–97 14–93 14–93 0.40 3.4 1.0 1.7 1.0

HR6430 2la6 89 1–99 11–99 11–99 1.00 1.4 1.0 1.5 0.9

HR2876 2ltm 95 1–107 13–107 13–107 0.04 Not converged 1.6 1.4 1.5

YR313 2ltl 102 1–119 18–119 18–40, 46–115 0.10 1.6 1.4 1.7 1.3

OR36 2lci 128 1–134 1–128 1–128 0.50 2.0 1.5 n/ab 1.2

HR5460 2lah 150 1–160 11–160 19–160 0.02 Not converged 3.2 n/ab 1.8

a Ratio of NOE-pseudo energy weights selected automatically by autoNOE-Rosetta for raw versus refined data sets
b A segmentation fault in CYANA 3.0 prohibited us from finishing the structure calculation
c The reference structure for AR3436a is a new NMR structure (PDB accession code: TBD) that results from a (manual) re-evaluation of the

original NMR spectra
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RMSD [ 4 Å to the reference NMR structure), but did not

converge to a high-precision structural bundle.

These observations prompted us to investigate whether

the better-packed structure obtained with AutoNOE-

Rosetta might actually be better supported by the raw NMR

data as well. Indeed, a careful analysis of the raw input data

conducted together with members of the laboratory that

authored the original data set revealed a number of prob-

lems[manuscript in preparation]. Although the backbone

assignment was nearly complete and correct, the side-chain

chemical shifts were incomplete and had miss-assignments.

Additionally, the NOESY data were under-picked as indi-

cated by the unbalanced Recall-Precision scores of the

PSVS analysis, such that many potentially well resolved

peaks were not contained in the original peak list. These

issues hindered the structure calculations of NOE-driven

programs, but had no influence on the CS-Rosetta calcu-

lations. After correcting these issues with the input data,

the structures obtained with conventional methods matched

with the autoNOE-Rosetta models obtained with either the

original data (1.0 Å) or the new data (1.0 Å). This shows

that autoNOE-Rosetta is not only reliable with unrefined

(raw) peak lists but also with raw (i.e., incomplete and

erroneous) sidechain chemical shift assignments. We are

now in the process of systematically investigating the

influence of such raw chemical shift assignments on

automatic NOE assignment methods and our preliminary

results support the anecdotal case reported here. The

advantage of this robustness of AutoNOE-Rosetta for the

full NMR pipeline is obvious. Assignment of side-chain

chemical shifts is often a major bottleneck to progress in an

NMR structure determination project. Automatic methods,

such as FLYA (Schmidt and Guntert 2012), might take the

burden of manual assignment, but cannot be relied on to

always yield the highest quality of resonance assignments.

However, paired with autoNOE-Rosetta, which is more

fault-tolerant than other methods, an accurate structure

might still be generated either as final result, or as a starting

point for further refinement of the chemical shift

assignments.

Fig. 4 Structure determination

of AR3436A from incomplete

and erroneous input data.

Shown are two models of

AR3436A in space-fill (a,

b) and cartoon visualization (c,

d) to highlight the differences in

packing of the hydrophobic core

between the PDB-deposited

NMR solution structure (a,

c) and the structure obtained

with AutoNOE-Rosetta from

the same input data (b, d). Due

to the incomplete and erroneous

chemical shift assignments

AutoNOE-Rosetta can only

assign a few NOE-crosspeaks

(yellow lines) that support the

packing of the helix,

nethertheless, these are

sufficient to yield well packed

structures. d The PDB-

deposited models violate these

NOE crosspeaks, demonstrating

that the respective assignments

were discarded because they

didn’t fit initial models
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Discussion

We developed a new method for automatic NOE assign-

ment and NMR structure determination, which we tested

on a benchmark of 50 data sets including 20 for which

X-ray crystallographic reference structures were available.

A final convergence and NOE consistency filter accurately

discriminates between successful and failed runs, and all 42

runs that pass this filter yield an accuracy better than 2.5 Å

Ca-RMSD. Thus, we successfully combined the most

important traits of CS-Rosetta with those of NOE-driven

structure determination. The new algorithm is robust

against missing or erroneous data as CS-Rosetta, but in the

end exploits the full NOESY data to achieve the optimal

precision and accuracy in final structures. In particular the

lack of precision is problematic for CS-Rosetta, even if

NOE-based filtering is applied (CS-DP-Rosetta (Raman

et al. 2010) ), as shown by the community wide assessment

of structure determination (CASD) (Rosato et al. 2012).

The usefulness of an automatic NOESY assignment

algorithms hinges on its ability to handle a wide variety

of data. In fact, the quality of NOESY peak lists can vary

dramatically as a function of the quality of the raw data,

the method of picking peaks, and the level of peak list

refinement. With 50 data sets from 41 different proteins,

we are confident that our benchmark covers a realistic

range of NMR data quality. To enhance the variety in the

benchmark, we also included data sets at different stages

of refinement (termed raw, unrefined, and refined). And in

spite of this wide variety of input data quality autoNOE-

Rosetta yields accurate results with striking consistency,

which demonstrates a remarkable robustness of the

method against challenging input data. Thus, autoNOE-

Rosetta is a significant advance in fully automatic analysis

of NMR data.

We were able to compare autoNOE-Rosetta ensembles

with PDB-deposited NMR ensembles which reflect the

state-of-the-art in NMR structure determination including

final refinement in explicit water. Remarkably, the auto-

NOE-Rosetta results are either very close in accuracy

(within 25 %) or significantly better (Fig. 2) than the PDB-

deposited models. The most significant improvements were

from 9.6 to 2.3 Å for the double-labelled sample, DrR1470,

and from 4.7 to 2.1 Å for the triple-labelled, ILV-proton-

ated sample, SR10 for which our calculations started from

an unrefined data set.

AutoNOE-Rosetta ensembles’ high accuracy—both

relative and absolute—is especially remarkable consider-

ing that we are comparing an automated, unsupervised

method with expert driven iterative and structure based

refinement, as it is reflected in PDB deposited structures.

For experts in NMR data analysis the method will provide

better starting points for refining challenging data sets. For

non-experts it will allow a safe and straightforward appli-

cation of NMR structure determination to routine cases.

We are confident that our method provides a significant

progress towards unsupervised automatic NMR structure

determination, which is likely to broaden the applicability

of NMR for structure determination in academic and non-

academic labs.

Methods

Benchmark

The 50 data sets comprising target sequence, assigned

chemical shifts, and unassigned peak lists were obtained

from three published sources (SI Appendix: Table S1): (1)

all data sets available by December 2012 at the community

wide assessment of NMR structure determination (CASD)

(Rosato et al. 2012; Rosato et al. 2009) (currently hosted at

http://www.wenmr.eu/wenmr/casd-nmr-data-sets), (2) all

monomer data sets from a recent molecular replacement

(MR) benchmark (Mao et al. 2011) (http://psvs-1_4-dev.-

nesg.org/MR/dataset.html) (SI Appendix: Fig. S5), (3) all

targets from our previous work (Lange et al. 2012).

Peak lists from the first prediction period of CASD

(CASDI) are refined. For targets from the second predic-

tion period of CASD (CASDII), both, refined and raw

(automatically picked) peak lists are available. For MR

targets, the status of the peak lists is unknown but assumed

refined, and for ILV-targets the peak lists and chemical

shift files are unrefined, that is chemical shift assignments

have been verified and peaks have been picked by a human

expert (Lange et al. 2012), but the data sets have not

undergone iterative refinement using structural models.

To analyze the accuracy of final structures, we com-

puted the Ca-RMSD on all residues that are structured in

the reference. Tails that were not well defined (flexible) in

the reference structure are excluded from RMSD compu-

tation as specified in Table S1. For 11 reference structures,

also internal loop-regions were not well defined and had to

be excluded from RMSD calculations. Detailed justifica-

tions for these exclusions are given in Table S9. For a

given method, autoNOE-Rosetta or CYANA, the ten final

models are superimposed with the reference structures to

compute Ca-RMSDs and heavy-atom RMSDs.

AutoNOE-Rosetta

AutoNOE-Rosetta structure calculations were run with

parameters as detailed here (Lange 2013). Fragments were

picked by the Rosetta3 fragment picker (Vernon et al.

2013) using the provided chemical shift data. Homologous

proteins using an e-value cutoff of 0.05 (sequence identity
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[20 %) were excluded from fragment picking. Tolerances

for NOESY cross-peak assignment were set for all targets

to 0.3, 0.3, 0.03 and 0.04 for 13C, 15N, direct 1H, and

indirect 1H dimension, respectively. Residual Dipolar

Coupling data were used where available (SI Appendix,

Table S1).

For data sets with unrefined or refined peak lists, NOE-

restraint strengths of 5, 10, 25 and 50, respectively are

chosen, and for targets with raw peak lists restraint

strengths of 1, 2, 5, 10, 25, and 50. For each restraint

weight 3 independent runs were carried out with different

random seeds. The 10 lowest energy structures yield the

final ensemble of a given run.

To identify the optimal run the resulting ensembles were

ranked as follows: The converged residues are identified as

those with a Ca-RMS fluctuation of less than 2 Å, as

reported previously (Lange et al. 2012). The average

pairwise RMSD is computed on converged regions (SI

Appendix, Methods), and an effective precision (EP) is

computed from pairwise RMSD and fraction of converged

residues. For each run with constraint weight wcst a

cumulative score S ¼ E � 12 log wcst þ 5EP is computed,

where E denotes the median Rosetta all-atom energy of the

ensemble. If in any of the runs more than 2,000 peaks with

initial assignments are removed, because final models

violate them (column ‘violated’ in Table S11), only E is

considered for selection of runs, otherwise the final run is

selected using S.

The models of the top-ranking ensemble are further

relaxed against the automatically assigned NOEs including

intra-residue and sequential NOEs using a tenfold

increased NOE-restraint weight. If this procedure reduces

the number of NOE violations to less than 40 % of the

violations counted in the ensemble of un-relaxed models,

the relaxed models are accepted as final models, otherwise

the un-relaxed models are kept as final models. This was

the case for data sets HR2876(raw), YR313(raw), and

CtR107. For all other data sets the relaxed models are kept

as final models. This refinement step generally reduces

NOE-violations without significantly affecting backbone

RMSD to the reference structure.

We established two criteria for successful calculations:

(1) reasonable NOE consistency (target-function\500) and

(2) convergence (SI Appendix: Methods 2.2). For the

convergence criterion the number of well defined residues

has to reach 90 % or more of the total number of residues

with random coil index (RCI) derived S (Guerry and

Herrmann 2011) order parameter (Berjanskii and Wishart

2005) larger than 0.7 (‘‘Methods’’ section and SI Appendix,

Table S2d).

A few NOE data sets were recorded with reduced sweep

width leading to peak folding. AutoNOE-Rosetta unfolds

such frequencies on the fly, if the sweep-window is noted

in the header of the respective peak list. For CYANA

calculations we manually unfolded by replicating peaks

with integer multiples of the sweep width subtracted or

added to the respective frequencies. This applies to four

peak lists of two proteins of our benchmark and the cor-

responding sweep-width parameters are given in (SI

Appendix, Table S6).

AutoNOE-Rosetta is parallelized for the MPI frame-

work and runs were either carried out on our in-house

cluster or on JUROPA at the Juelich Supercomputer center

using 184 or 192 parallel processes, respectively.

Instructions to run autoNOE-Rosetta including com-

mand-lines can be found in the Manual or Tutorial sections

of our website (www.csrosetta.org) and in SI Appendix:

Methods.

Cyana structure calculations

Cyana 3.0 calculations were carried out to provide readers

with a familiar reference for each target. TALOS?

restraints were generated from the chemical shift data, and

100 initial, and 20 final models were generated using 20,000

steps of torsion angle dynamics. RMSDs were computed

from the 20 final models using the same residues and ref-

erence structure as for autoNOE-Rosetta models (SI

Appendix: Methods for example script). All TALOS?

predicted phi and psi angels with prediction class ‘Good’

are used. Two schemes to derive torsion restraints from

TALOS? predictions were tested. ACO_TIGHT restraints

were generated by computing the lower- and upper bound as

/ ± D/, where / denotes the TALOS? predicted torsion

angle in degree, and D/ the TALOS? estimated standard

deviation. For ACO_LOOSE, we obtained bounds as /�
2max min D/; 35ð Þ; 10ð Þ:ACO_TIGHT is the recommended

protocol at the NMR facility of the Center for Advanced

Biotechnology and Medicine (CABM) as described here

(http://www.nmr2.buffalo.edu/enter/NMRWiki/images/2/

2e/Talos2dyana_taloserrors.txt). ACO_LOOSE is the pro-

tocol that derives from applying the talos2dyana.com exe-

cutable packaged with the TALOS? software. A

comparison of both protocols shows that ACO_TIGHT

yields better accuracy over all targets (SI Appendix, Fig.

S2a). Thus, ACO_TIGHT is used in all further CYANA

calculations.

Where RDC data was available, CYANA runs were car-

ried out both, with and without RDC data. A weight of 0.02

was used for the RDC restraint, and 0.2 as cutoff for RDC

violation output. For each alignment medium 5 additional

pseudo-residues of type LL5 and 1 of type ORI are attached

at the end of the protein sequence. Alignment tensor

parameters, Dzz and R, are estimated using the macro

FindTensor.cya which employs the histogram method

(Clore et al. 1998). This protocol was obtained from http://
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www.nmr2.buffalo.edu/nesg.wiki/CYANA. RMSDs of

CYANA calculations with RDCs were generally higher than

CYANA calculations without RDCs (SI Appendix, Fig.

S2b), whereas RDC data leads to improved results for

autoNOE-Rosetta (SI Appendix, Fig. S2c). Thus, CYANA

calculations without RDCs are compared to autoNOE-

Rosetta with RDCs throughout the study.
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